Specifying absorption probabilities for the simple random walk

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Random Walk Radiosity with Generalized Absorption Probabilities

In this paper we study random walk estimators for radiosity with generalized absorption probabilities. That is, a path will either die or survive on a patch according to an arbitrary probability. The estimators studied so far, the infinite path length estimator and finite path length one, can be considered as particular cases. Practical applications of the random walks with generalized probabil...

متن کامل

Repeated bond traversal probabilities for the simple random walk

We consider the average numberBm(t) of bonds traversed exactly m times by a t step simple random walk. We determine Bm(t) explicitly in the scaling limit t → ∞ with m/√t fixed in dimension d = 1 and m/ log t fixed in dimension d = 2. The scaling function is an erfc in d = 1 and an exponential in d = 2. PACS number: 05.40.Fb

متن کامل

Absorption Probabilities for the Two-Barrier Quantum Walk

Let p (n) j be the probability that a Hadamard quantum walk, started at site j on the integer lattice {0, . . . , n}, is absorbed at 0. We give an explicit formula for p j . Our formula proves a conjecture of John Watrous, concerning an empirically observed linear fractional recurrence relation for the numbers p (n) 1 .

متن کامل

The Intersection Exponent For Simple Random Walk

The intersection exponent for simple random walk in two and three dimensions gives a measure of the rate of decay of the probability that paths do not intersect. In this paper we show that the intersection exponent for random walks is the same as that for Brownian motion and show in fact that the probability of nonintersection up to distance n is comparable (equal up to multiplicative constants...

متن کامل

Cut times for Simple Random Walk Cut times for Simple Random Walk

Let S(n) be a simple random walk taking values in Z d. A time n is called a cut time if S0; n] \ Sn + 1; 1) = ;: We show that in three dimensions the number of cut times less than n grows like n 1? where = d is the intersection exponent. As part of the proof we show that in two or three dimensions PfS0; n] \ Sn + 1; 2n] = ;g n ? ; where denotes that each side is bounded by a constant times the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Stochastic Processes and their Applications

سال: 1976

ISSN: 0304-4149

DOI: 10.1016/0304-4149(76)90012-0